Тепловая нагрузка на отопление и другие примеры расчётов: и

28-05-2017
Отопление

Тема данной статьи - определение тепловой нагрузки на отопление и других параметров, нуждающихся в расчете, для автономной отопительной системы. Материал ориентирован в первую очередь на обладателей частных домов, далеких от теплотехники и нуждающихся в максимально алгоритмах и простых формулах.

Итак, в путь.

Наша задача - научиться рассчитывать основные параметры отопления.

точный расчёт и Избыточность

Стоит сначала оговорить одну тонкость расчетов: полностью правильные значения теплопотерь через пол, потолок и стенки, каковые приходится компенсировать системе отопления, вычислить фактически нереально. Возможно сказать только о той либо другой степени достоверности оценок.

Обстоятельство - в том, что на потери тепла воздействует через чур много факторов:

  • Тепловое сопротивление капитальных стен и всех слоев отделочных материалов.
  • Наличие либо отсутствие мостиков холода.
  • Роза расположение и ветров дома на рельефе местности.
  • Работа вентиляции (которая, со своей стороны, опять-таки зависит от направления и силы ветра).
  • стен инсоляции и Степень окон.

Имеется и хорошие новости. Фактически все современные системы и отопительные котлы распределенного отопления (утепленные полы, электрические и газовые конвектора и т.д.) снабжаются термостатами, дозирующими расход тепла в зависимости от температуры в помещении.

Выносной термостат газового котла.

С практической стороны это указывает, что избыточная тепловая мощность повлияет только на режим работы отопления: скажем, 5 КВт*ч тепла будут даны не за один час постоянной работы с мощностью 5 КВт, а за 50 мин. работы с мощностью 6 КВт. Следующие 10 мин. котел либо другой нагревательный прибор совершит в режиме ожидания, не потребляя электричество либо энергоноситель.

Следовательно: при вычисления тепловой нагрузки наша задача - выяснить ее минимально допустимое значение.

Единственное исключение из неспециализированного правила связано с работой классических твердотопливных котлов и обусловлено тем, что понижение их тепловой мощности связано с важным падением КПД из-за неполного сгорания горючего. Неприятность решается установкой в контур теплоаккумулятора и дросселированием отопительных устройств термоголовками.

Простейшая схема отопления с теплоаккумулятором.

Котел по окончании растопки работает на полной мощности и с большим КПД до полного прогорания угля либо дров; после этого накопленное теплоаккумулятором тепло дозировано расходуется на поддержание оптимальной температуры в помещении.

Большинство других нуждающихся в расчете параметров также допускает некоторую избыточность. Но, об этом - в соответствующих разделах статьи.

Список параметров

Итак, что нам, фактически, предстоит считать?

  • Неспециализированную тепловую нагрузку на отопление дома. Она соответствует минимально нужной мощности котла либо суммарной мощности устройств в распределенной системе отопления.
  • Потребность в тепле отдельной помещения.
  • Количество секций секционного радиатора и размер регистра, соответствующий определенному значению тепловой мощности.

Обратите внимание: для готовых отопительных устройств (конвекторов, пластинчатых радиаторов и т.д.) производители в большинстве случаев показывают полную тепловую мощность в сопроводительной документации.

На сайтах производителей можно даже найти удобные калькуляторы и таблицы для расчета количества секций.
  • Диаметр трубопровода, талантливого при водяного отопления обеспечить нужный тепловой поток.
  • Параметры циркуляционного насоса, приводящего в перемещение теплоноситель в контуре с заданными параметрами.
  • Размер расширительного бака, компенсирующего тепловое расширение теплоносителя.

Перейдем к формулам.

Тепловая нагрузка

Один из главных факторов, воздействующих на ее значение - степень утепления дома. СНиП 23-02-2003, регламентирующий тепловую защиту зданий, нормирует данный фактор, выводя рекомендованные значения теплового сопротивления ограждающих конструкций для каждого региона страны.

Мы приведем два метода исполнения подсчетов: для зданий, соответствующих СНиП 23-02-2003, и для домов с ненормированным тепловым сопротивлением.

Нормированное тепловое сопротивление

Инструкция по расчету тепловой мощности в этом случае выглядит так:

  • За базовое значение берутся 60 ватт на 1 м3 полного (включая стенки) объема дома.
  • Для каждого из окон к этому значению дополнительно добавляется 100 ватт тепла. Для каждой ведущей на улицу двери - 200 ватт.
На тепловизоре хорошо видны потери тепла через окна.
  • Для компенсации возрастающих в холодных регионах утрат употребляется дополнительный коэффициент.
Регион страны Коэффициент
Краснодар, Ялта, Сочи 0,7 - 0,9
область и Москва, Петербург 1,2 - 1,3
Иркутск, Хабаровск 1,5 - 1,6
Чукотка, Якутия 1,8 - 2,0

Давайте как пример выполним расчет для дома размерами 12*12*6 метров с двенадцатью окнами и двумя дверьми на улицу, расположенного в Севастополе (средняя температура января - +3С).

  1. Отапливаемый количество образовывает 12*12*6=864 кубометра.
  2. Базовая тепловая мощность образовывает 864*60=51840 ватт.
  3. двери и Окна пара увеличат ее: 51840+(12*100)+(2*200)=53440.
  4. Только мягкий климат, обусловленный близостью моря, вынудит нас применять региональный коэффициент, равный 0,7. 53440*0,7=37408 Вт. Именно на это значение и возможно ориентироваться.
Близость моря делает мягкими крымские зимы.

Ненормированное тепловое сопротивление

Что делать, в случае если уровень качества утепления дома заметно лучше либо хуже рекомендованного? В этом случае для оценки тепловой нагрузки возможно применять формулу вида Q=V*Dt*K/860.

В ней:

  • Q - заветная тепловая мощность в киловаттах.
  • V - отапливаемый количество в кубометрах.
  • Dt - отличие температур между домом и улицей. В большинстве случаев берется дельта между рекомендованным СНиП значением для внутренних помещений (+18 - +22С) и средним минимумом уличной температуры в наиболее холодный месяц за последние пара лет.

Уточним: рассчитывать на безотносительный минимум в принципе вернее; но это будет означать избыточные затраты на отопительные приборы и котёл, полная мощность которых будет пользуется спросом только раз в пара лет. Цена малого занижения расчетных параметров - некоторое падение температуры в помещении в пик холодов, которое несложно компенсировать включением дополнительных обогревателей.

  • К - коэффициент утепления, который возможно забрать из нижеприведенной таблицы. Промежуточные значения коэффициента выводятся аппроксимацией.
Описание здания Коэффициент утепления
3 - 4 Кладка в полкирпича, либо дощатая стенки, либо профлист на каркасе; остекление в одну нитку
2 - 2,9 Кладка в кирпич, остекление в две нитки в древесных рамах
1 - 1,9 Кладка в полтора кирпича; окна с однокамерными стеклопакетами
0,6 - 0,9 Наружное утепление пенопластом либо минватой; двухкамерные энергосберегающие стеклопакеты

Давайте повторим вычисления для нашего дома в Севастополе, уточнив, что его стенки являются кладкой толщиной 40 см из ракушечника (пористой осадочной породы) без внешней отделки, а остекление выполнено однокамерными стеклопакетами.

Дом из ракушечника без наружной отделки.
  1. Коэффициент утепления примем равным 1,2.
  2. Количество дома мы вычислили ранее; он равен 864 м3.
  3. Внутреннюю температуру примем равной рекомендованным СНиП для регионов с нижним пиком температур выше -31С - +18 градусам. Сведения о среднем минимуме любезно посоветует широко узнаваемая интернет-энциклопедия: он равен -0,4С.
  4. Расчет, так, будет иметь вид Q = 864 * (18 - -0,4) * 1,2 / 860 = 22,2 КВт.

Как легко подметить, подсчет дал итог, отличающийся от взятого по первому методу в полтора раза. Обстоятельство, в первую очередь в том, что средний минимум, использованный нами, заметно отличается от полного минимума (около -25С). Повышение дельты температур в полтора раза ровно во столько же раз увеличит оценочную потребность здания в тепле.

Морозные дни бывают даже в Крыму.

Гигакалории

В расчетах количества тепловой энергии, приобретаемой зданием либо помещением, наровне с киловатт-часами употребляется еще одна величина - гигакалория. Она соответствует количеству тепла, нужному для нагрева 1000 тысячь киллограм воды на 1 градус при давлении в 1 атмосферу.

Как пересчитать киловатты тепловой мощности в гигакалории потребляемого тепла? Все легко: одна гигакалория равна 1162,2 КВт*ч. Так, при пиковой мощности источника тепла в 54 КВт большая часовая нагрузка на отопление составит 54/1162,2=0,046 Гкал*час.

Полезно: для каждого региона страны местными властями нормируется потребление тепла в гигакалориях на квадратный метр площади в течение месяца. Среднее по РФ значение  - 0,0342 Гкал/м2 в месяц.

Именно в гигакалориях измеряют затраты тепла современные теплосчетчики.

Помещение

Как подсчитать потребность в тепле для отдельной помещения? Тут употребляются те же схемы расчетов, что для дома в целом, с единственной поправкой. В случае если к помещению примыкает отапливаемое помещение без собственных отопительных устройств, оно включается в расчет.

Так, в случае если к помещению размером 4*5*3 метра  примыкает коридор размером 1,2*4*3 метра, тепловая мощность отопительного прибора рассчитывается для объема в 4*5*3+1,2*4*3=60+14,4=74,4 м3.

Отопительные устройства

Секционные радиаторы

В общем случае данные о тепловом потоке на одну секцию неизменно возможно обнаружить сайте производителя.

Если он малоизвестен, возможно ориентироваться на следующие приблизительные значения:

  • Чугунная секция - 160 Вт.
  • Биметаллическая секция - 180 Вт.
  • Алюминиевая секция - 200 Вт.
Алюминиевый радиатор лидирует благодаря высокой теплопроводности и развитому оребрению.

Как неизменно, имеется последовательность тонкостей. При боковом подключении радиатора с 10 и более секциями разброс температур между ближними к подводке и концевыми секциями будет очень большим.

Но: эффект сведется на нет, в случае если подводки подключить диагонально либо снизу вниз.

Помимо этого, в большинстве случаев производители отопительных устройств показывают мощность для в полной мере конкретной дельты температур между воздухом и радиатором, равной 70 градусам. Зависимость теплового потока от Dt линейна: в случае если батарея на 35 градусов горячее воздуха, тепловая мощность батареи будет ровно в два раза меньше заявленной.

Скажем, при температуре воздуха в помещении, равной +20С, и температуре теплоносителя в +55С мощность алюминиевой секции стандартного размера будет равна 200/(70/35)=100 ваттам. Чтобы обеспечить мощность в 2 КВт, пригодится 2000/100=20 секций.

Регистры

Особняком в перечне отопительных устройств стоят самодельные регистры.

На фото - отопительный регистр.

Производители по понятным обстоятельствам не смогут указать их тепловую мощность; но ее несложно вычислить своими руками.

  • Для первой секции регистра (горизонтальной трубы известных размеров) мощность равна произведению ее длины и наружного диаметра в метрах, дельты температур между воздухом и теплоносителем в градусах и постоянного коэффициента 36,5356.
  • Для секций, находящихся в восходящем потоке теплого воздуха, употребляется дополнительный коэффициент 0,9.

Давайте разберем очередной пример - вычислим значение теплового потока для четырехрядного регистра с диаметром секции 159 мм, температурой 4 и длиной метра в 60 градусов в помещении с внутренней температурой +20С.

  1. Дельта температур в нашем случае равна 60-20=40С.
  2. Переводим диаметр трубы в метры. 159 мм = 0,159 м.
  3. Вычисляем тепловую мощность первой секции. Q = 0,159*4*40*36,5356 = 929,46 ватт.
  4. Для каждой последующей секции мощность будет равна 929,46*0,9=836,5 Вт.
  5. Суммарная мощность составит 929,46 + (836,5*3)=3500 (с округлением) ватт.

Диаметр трубопровода

Как выяснить минимальное значение внутреннего диаметра трубы розлива либо подводки к отопительному прибору? Не начнём лезть в дебри и воспользуемся таблицей, содержащей готовые результаты для отличия между подачей и обраткой  в 20 градусов. Именно это значение характерно для автономных систем.

Большая скорость потока теплоносителя не должна быть больше 1,5 м/с чтобы не было появления шумов; чаще ориентируются на скорость в 1 м/с.

При большой скорости потока вода шумит на фитингах и переходах диаметра. Едва ли этот шум порадует вас ночью.
Внутренний диаметр, мм Тепловая мощность контура, Вт при скорости потока, м/с
0,6 0,8 1
8 2450 3270 4090
10 3830 5110 6390
12 5520 7360 9200
15 8620 11500 14370
20 15330 20440 25550
25 23950 31935 39920
32 39240 52320 65400
40 61315 81750 102190
50 95800 127735 168670

Скажем, для котла мощностью 20 КВт минимальный внутренний диаметр розлива при скорости потока в 0,8 м/с будет равен 20 мм.

Обратите внимание: внутренний диаметр близок к ДУ (условному проходу) металлической трубы. Пластиковые и металлопластиковые трубы в большинстве случаев маркируются наружным диаметром, который на 6-10 мм больше внутреннего. Так, полипропиленовая труба размером 26 мм имеет внутренний диаметр 20 мм.

Внутренний диаметр пластиковой трубы равен разнице наружного диаметра и удвоенной толщины стенки.

Циркуляционный насос

Нам серьёзны два параметра насоса: его производительность и напор. В частном доме при любой разумной протяженности контура достаточно минимального для наиболее недорогих насосов  напора в 2 метра (0,2 кгс/см2): именно это значение перепада снабжает циркуляцию системы отопления многоквартирных домов.

Нужная производительность вычисляется по формуле G=Q/(1,163*Dt).

В ней:

  • G - производительность (м3/час).
  • Q - мощность контура, в который устанавливается насос (КВт).
  • Dt - перепад температур между прямым и обратным трубопроводами в градусах (в автономной системе типично значение Dt=20С).

Для контура, тепловая нагрузка на который образовывает 20 киловатт, при стандартной дельте температур расчетная производительность составит 20/(1,163*20)=0,86 м3/час.

У многих насосов предусмотрена ступенчатая или плавная регулировка производительности.

Расширительный  бак

Один из параметров, нуждающихся в расчете для автономной системы - количество расширительного бачка.

Точный расчет основывается на достаточно долгом последовательности параметров:

  • типе и Температуре теплоносителя. Коэффициент расширения зависит не только от степени нагрева батарей, но и от того, чем они заполнены: водно-гликолевые смеси увеличиваются посильнее.
  • Максимально рабочем давлении в системе.
  • Давлении зарядки бачка, зависящем, со своей стороны, от гидростатического давления контура (высоты верхней точки контура над расширительным баком).

Имеется, но, один нюанс, разрешающий очень сильно упростить расчет. В случае если занижение объема бачка приведет в лучшем случае к постоянному срабатыванию предохранительного клапана, а в нехорошем - к разрушению контура, то его избыточный количество ничем не повредит.

Как раз исходя из этого в большинстве случаев берется бак с литражом, равным 1/10 суммарного количества теплоносителя в системе.

Подсказка: дабы определить количество контура, достаточно заполнить его водой и слить ее в мерную посуду.

Расширительный бак может быть установлен в любой точке автономного закрытого контура.

Заключение

Сохраняем надежду, что приведенные схемы вычислений упростят жизнь читателю и избавят его от многих неприятностей. Как в большинстве случаев, прикрепленное к статье видео предложит его вниманию дополнительную данные.

Удач!